

HERCULUX Chengdu HercuLux Photoelectric Technology Co.,Ltd Product Approval

Approval number:

Customer:

Manufacturer: Chengdu HercuLux Photoelectric Technology Co.,Ltd

PN	Code	Product
HK-HG-68@32-15-D9-21-1g-1	1. 08. 02222	HK Gemini 68-32 -15 degree reflective cup
HK-HG-68@32-24-D12-21-1g-1	1. 08. 02241	HK Gemini 68-32 -24 degree reflective cup
HK-HG-68@32-36-D12-21-1g-1	1. 08. 02317	HK Gemini 68-32 -36 degree reflective cup
HK-HG-68@32-50-D12-21-1g-1	1. 08. 02331	HK Gemini 68-32 -50 degree reflective cup

	Supplier co	onfirmation			Clier	nt confirmation	
Proposed		DATE		Qualified□			
Project manager		DATE		Unqualified□		DATE	
Audit		DATE		Audit		DATE	
Approved		DATE		Approved		DATE	
Stamp	Stamp			Stamp		DATE	

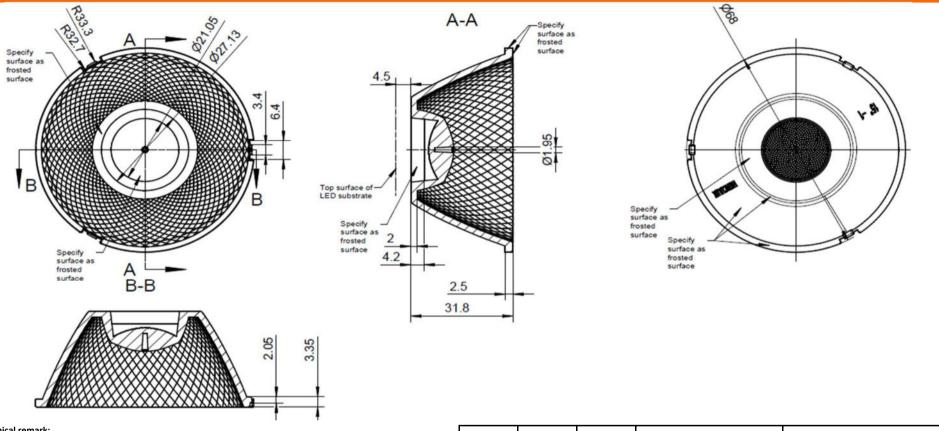
(Confirmation of acceptance by both parties must be signed and sealed)

Factory: Chengdu Shuangliu District, Iot industrial park 2 road HercuLux Photoelectric Park

Phone: 028-85887727 (801) 028-85887990 (801) Fax: 028-8588730 http://www.herculux.cn/
Sales Dept: Shenzhen Nanshan District Nanshan Cloud Valley Innovation Industrial Park Comprehensive Service Building, 501-505

TEL: 0755-2937 1541 FAX: 0755-2907 5140

^{*}Approval In duplicate, for both supplier and customer.



HERCULUX 恒坤光电 Product Approval

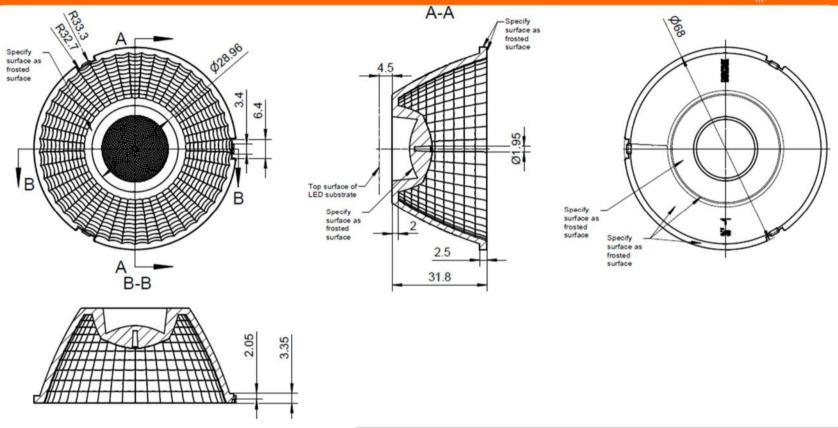
TEL: 0755-2937 1541 Date updated: 2021/12/20 FAX: 0755-2907 5140 http://www.herculux.cn/

Product Picture:	
PN:	HK-HG-68@32-15-D9-21-1g-1
Size(L*W*H/Φ*H):	Ф:68mm; H:32mm
Material:	PC half aluminum plating
Effiency:	\
Temperature(Topr):	Material extreme temperature resistance : -40℃ to +120℃ long-term use temperature : -40℃ to +90℃
FWHM:	15°、24°、36°、50°
Matched LES:	D12(Use D9 15 °)

- 1. The 3D map is not indicated for rounded corners and draft angle.
- 2. The dimensional tolerances are not specified according to GB/T 14486 2008 MT5.
- 3, The surface has no flash, shrinkage, bubbles and other defects.

	\t:l	d = =: ===								IV IIC (0.0022.45.00	21 1 = 1	
_	Optical design						LIK Camalas	i 68-32 -15 degree	Г	IK-HG-C	68@32-15-D9-2	71-18-1	
tı	Review Validation ~250 250~450						HK Gemin ref			1.08.02222			
									ımber of	drawin	qty	wei	ght
							Material:	C half aluminum platir			CDHK		
\~			>4	450									

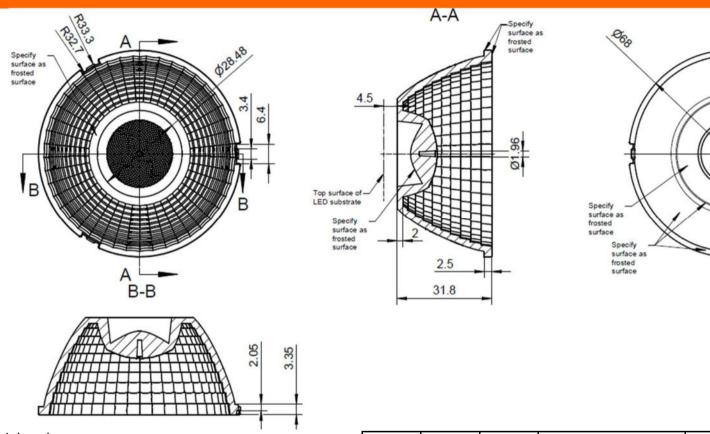
							dation			widterial.	e nan alammam piatii	CDIIK	
MT5 Tolerance	Basic size	<3	3~10	24~65	65~140	140~250	250~	450	>450				
table (mm)	olerance valu	±0.1	±0.15	±0.35	±0.50	±0.80	±1	.2	±2.0				



- 1. The 3D map is not indicated for rounded corners and draft angle.
- 2. The dimensional tolerances are not specified according to GB/T 14486 2008 MT5.
- 3, The surface has no flash, shrinkage, bubbles and other defects.

	o	Optical design							000000000	24.4		
	Optical	design						HK-HG-6	8@32-24-D12-	21-1g-1		
	tructure desig						i 68-32 -24 degree lective cup	1.08.02241				
								umber of drawin	qty	weight		
	Validation					Material:	C half aluminum platir		CDHK			
^	~250 250~		~450	>4	450							
_			_									

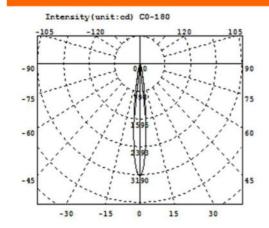
MT5 Tolerance	Basic size	<3	3~10	24~65	65~140	140~250	250~450	>450
	olerance valu	±0.1	±0.15	±0.35	±0.50	±0.80	±1.2	±2.0

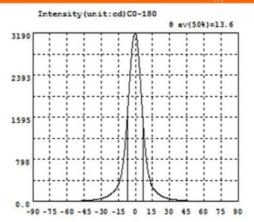


- 1. The 3D map is not indicated for rounded corners and draft angle.
- 2. The dimensional tolerances are not specified according to GB/T 14486 2008 MT5.
- 3, The surface has no flash, shrinkage, bubbles and other defects.

	Optical	tical design							HK-HG-6	8@32-36-D12-	-21-1g-1
	tructure desig							i 68-32 -36 degree lective cup		1.08.02317	
									umber of drawin	qty	weight
	Valid	Validation					Material:	C half aluminum platir		CDHK	
-	~250 250~450 >		>4	450							
_	00		_								

Tolerance Solution	_										
Tolerance value +0.1 +0.15 +0.35 +0.50 +0.80 +1.2 +2.0	ı	MT5	Basic size	<3	3∼10	24~65	65~140	140~250	250~450	>450	
l hlerance value +0.1		Toloranco		_							
$ t_{able (mm)} $ pierance value ± 0.1 ± 0.15 ± 0.35 ± 0.50 ± 0.80 ± 1.2 ± 2.0				.0.1	.045	.0.25	.0.50	.0.00	.4.2	.2.0	1
		table (mm)	oierance vaiu	±0.1	±0.15	±0.35	±0.50	±0.80	±1.2	±2.0	ı




- 1. The 3D map is not indicated for rounded corners and draft angle.
- 2. The dimensional tolerances are not specified according to GB/T 14486 2008 MT5.
- 3, The surface has no flash, shrinkage, bubbles and other defects.

	Optical	design						HK-HG-	68@32-50-D12	-21-1g-	1
	tructur	e desig					i 68-32 -50 degree lective cup		1.08.02331		
	Review Validation							umber of drawir	qty	we	ight
					Material:	C half aluminum platir		CDHK			
^	~250 250~450		>4	450							
<u> </u>	90		1.7	т.							

						• 4	aution		mateman	o nan arannian piati	
MT5 Tolerance	Basic size	<3	3∼10	24~65	65~140	140~250	250~450	>450			
	olerance valu	±0.1	±0.15	±0.35	±0.50	±0.80	±1.2	±2.0			

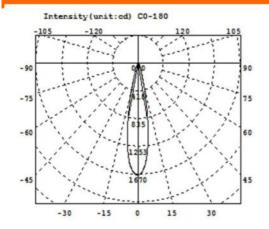
Intensity data: (deg , cd) C0-180

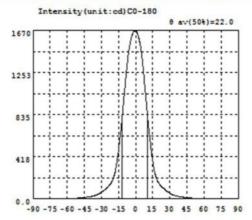
A	I	A	I	A	I	A	I	A	I	A	I
-90.0	0.4293	-58.5	1.633	-27.0	70.02	4.5	2241	36.0	27.87	67.5	0.2515
-88.5	0.3271	-57.0	2.338	-25.5	83.45	6.0	1749	37.5	24.43	69.0	0.2689
-87.0	0.3261	-55.5	3.272	-24.0	100.4	7.5	1301	39.0	21.58	70.5	0.2918
-85.5	0.2925	-54.0	4.387	-22.5	121.8	9.0	934.5	40.5	19.01	72.0	0.3177
-84.0	0.2602	-52.5	5.636	-21.0	147.1	10.5	658.5	42.0	15.70	73.5	0.5151
-82.5	0.2181	-51.0	6.941	-19.5	176.5	12.0	471.3	43.5	13.78	75.0	0.3179
-81.0	0.2306	-49.5	8.371	-18.0	207.8	13.5	341.6	45.0	12.01	76.5	0.3069
-79.5	0.1576	-48.0	9.892	-16.5	250.1	15.0	265.9	46.5	10.39	78.0	0.2819
-78.0	0.2852	-46.5	11.60	-15.0	308.7	16.5	219.9	48.0	8.880	79.5	0.2509
-76.5	0.3261	-45.0	13.43	-13.5	399.3	18.0	184.5	49.5	7.407	81.0	0.2405
-75.0	0.3452	-43.5	15.38	-12.0	543.5	19.5	154.1	51.0	6.016	82.5	0.2336
-73.5	0.3418	-42.0	17.76	-10.5	768.9	21.0	128.2	52.5	4.705	84.0	0.2483
-72.0	0.3401	-40.5	20.96	-9.0	1080	22.5	106.5	54.0	3.525	85.5	0.2856
-70.5	0.3097	-39.0	23.53	-7.5	1479	24.0	88.92	55.5	2.515	87.0	0.3149
-69.0	0.2825	-37.5	26.67	-6.0	1949	25.5	74.68	57.0	1.753	88.5	0.3271
-67.5	0.2788	-36.0	30.17	-4.5	2431	27.0	63.47	58.5	1.175	90.0	0.2599
-66.0	0.2848	-34.5	34.22	-3.0	2855	28.5	54.34	60.0	0.6833		
-64.5	0.3082	-33.0	38.83	-1.5	3125	30.0	47.10	61.5	0.3440		(
-63.0	0.3497	-31.5	44.07	0.0	3182	31.5	41.17	63.0	0.2116		
-61.5	0.5617	-30.0	50.83	1.5	3050	33.0	36.47	64.5	0.2628		
-60.0	1.045	-28.5	59.35	3.0	2708	34.5	31.94	66.0	0.2570		

Electricity Parameter:

Current I: 0.1000A Power: 3.259W Voltage V: 32.59V PF: 1.000

Optical Parameter (Distance=2.410m):


Equivalent Luminous flux: Φ eff= 324.6lm Efficiency: Eff=99.61lm/W


Diffuse angle: @(25%): 19.9deg@(50%): 13.6deg@(75%): 8.6deg @(50%): 13.6deg
Diffuse angle: @(25%): 19.9deg@(50%): 13.6deg@(75%): 8.6deg @(50%): 13.6deg

Imax=3182cd (C=0.0deg, G=0.0deg) CO-180Plane Imax= 3182cd(G=0.0deg)

C0-180Plane I0= 3182cd

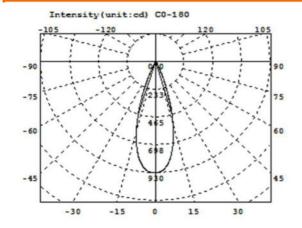
Intensity data: (deg , cd) C0-180

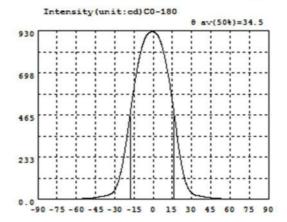
A	I	A	I	A	I	A	I	A	I	A	I
-90.0	0.2938	-58.5	1.177	-27.0	88.81	4.5	1497	36.0	26.78	67.5	0.3241
-88.5	0.3273	-57.0	1.732	-25.5	103.0	6.0	1365	37.5	22.74	69.0	0.3031
-87.0	0.3474	-55.5	2.712	-24.0	119.5	7.5	1196	39.0	19.59	70.5	0.2775
-85.5	0.3364	-54.0	3.349	-22.5	139.6	9.0	1011	40.5	16.74	72.0	0.2684
-84.0	0.3133	-52.5	4.420	-21.0	166.2	10.5	823.8	42.0	14.34	73.5	0.2804
-82.5	0.2816	-51.0	5.577	-19.5	205.0	12.0	651.5	43.5	12.21	75.0	0.2933
-81.0	0.2506	-49.5	6.800	-18.0	263.1	13.5	501.8	45.0	10.31	76.5	0.5202
-79.5	0.2307	-48.0	8.227	-16.5	354.7	15.0	375.0	46.5	8.613	78.0	0.3265
-78.0	0.2427	-46.5	9.892	-15.0	475.7	16.5	274.2	48.0	7.123	79.5	0.3271
-76.5	0.2964	-45.0	11.74	-13.5	621.3	18.0	211.9	49.5	5.805	81.0	0.3018
-75.0	0.2972	-43.5	13.78	-12.0	789.1	19.5	171.6	51.0	4.596	82.5	0.2690
-73.5	0.3380	-42.0	16.15	-10.5	969.9	21.0	145.1	52.5	3.504	84.0	0.2488
-72.0	0.3657	-40.5	18.97	-9.0	1157	22.5	124.7	54.0	2.558	85.5	0.2269
-70.5	0.3527	-39.0	22.17	-7.5	1323	24.0	107.6	55.5	1.785	87.0	0.2347
-69.0	0.3508	-37.5	26.14	-6.0	1462	25.5	91.91	57.0	1.217	88.5	0.2599
-67.5	0.3439	-36.0	30.91	-4.5	1560	27.0	78.14	58.5	0.8760	90.0	0.1240
-66.0	0.2296	-34.5	36.94	-3.0	1626	28.5	65.93	60.0	0.6073		
-64.5	0.3039	-33.0	44.38	-1.5	1661	30.0	54.88	61.5	0.4329		
-63.0	0.3316	-31.5	53.44	0.0	1668	31.5	45.50	63.0	0.4248		
-61.5	0.4874	-30.0	64.60	1.5	1642	33.0	37.78	64.5	0.4016		
-60.0	0.7825	-28.5	76.10	3.0	1588	34.5	31.58	66.0	0.3046		

Electricity Parameter:

Current I: 0.1000A Power: 3.250W Voltage V: 32.50V PF: 1.000

Optical Parameter (Distance=2.410m):


Equivalent Luminous flux: Φ eff= 328.5lm Efficiency: Eff=101.10lm/W


Diffuse angle: @(25%): 30.0deg @(50%): 22.0deg @(75%): 15.1deg @(50%): 22.0deg
Diffuse angle: @(25%): 30.0deg @(50%): 22.0deg @(75%): 15.1deg @(50%): 22.0deg
Imax=1669cd (C=0.0deg,G=-0.5deg)

C0-180Plane Imax= 1669cd(G=-0.5deg)

CO-180Plane IO= 1668cd

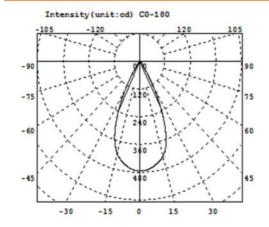
Intensity data: (deg , cd) C0-180

A	I	A	I	A	I	A	I	A	I	A	I
-90.0	0.2599	-58.5	1.401	-27.0	100.0	4.5	892.7	36.0	17.47	67.5	0.3699
-88.5	0.2942	-57.0	2.074	-25.5	141.1	6.0	866.7	37.5	15.71	69.0	0.3861
-87.0	0.3383	-55.5	2.876	-24.0	189.2	7.5	831.5	39.0	14.09	70.5	0.3937
-85.5	0.3700	-54.0	3.681	-22.5	249.4	9.0	787.5	40.5	12.02	72.0	0.3898
-84.0	0.3575	-52.5	4.390	-21.0	318.2	10.5	735.0	42.0	10.53	73.5	0.3410
-82.5	0.3238	-51.0	5.128	-19.5	391.2	12.0	676.1	43.5	9.207	75.0	0.3676
-81.0	0.2809	-49.5	5.946	-18.0	465.6	13.5	609.4	45.0	7.990	76.5	0.2804
-79.5	0.2622	-48.0	6.888	-16.5	539.9	15.0	538.9	46.5	6.819	78.0	0.2438
-78.0	0.2447	-46.5	8.128	-15.0	611.3	16.5	465.5	48.0	5.838	79.5	0.2458
-76.5	0.2593	-45.0	9.376	-13.5	678.6	18.0	389.2	49.5	4.985	81.0	0.2679
-75.0	0.3127	-43.5	10.71	-12.0	737.9	19.5	306.5	51.0	4.150	82.5	0.3108
-73.5	0.3644	-42.0	12.61	-10.5	789.7	21.0	239.0	52.5	3.394	84.0	0.3231
-72.0	0.4140	-40.5	14.28	-9.0	832.4	22.5	179.2	54.0	2.749	85.5	0.3593
-70.5	0.4511	-39.0	15.77	-7.5	866.6	24.0	130.3	55.5	1.809	87.0	0.3426
-69.0	0.4531	-37.5	17.66	-6.0	892.5	25.5	91.67	57.0	1.207	88.5	0.2884
-67.5	0.4430	-36.0	20.22	-4.5	909.9	27.0	65.32	58.5	0.8253	90.0	0.4839
-66.0	0.4393	-34.5	23.74	-3.0	919.7	28.5	47.64	60.0	0.5986		
-64.5	0.4508	-33.0	29.06	-1.5	924.3	30.0	35.00	61.5	0.4561		
-63.0	0.5057	-31.5	37.49	0.0	924.9	31.5	27.45	63.0	0.3932		
-61.5	0.6489	-30.0	50.57	1.5	921.2	33.0	22.81	64.5	0.3641		
-60.0	0.9232	-28.5	70.55	3.0	911.0	34.5	19.72	66.0	0.3640		

Electricity Parameter:

Current I: 0.1000A Power: 3.250W Voltage V: 32.50V PF: 1.000

Optical Parameter (Distance=2.410m):


Equivalent Luminous flux: Φ eff= 324.7lm Efficiency: Eff=99.91lm/W

Diffuse angle: @ (25%): 44.0deg @ (50%): 34.5deg @ (75%): 24.6deg @ (50%): 34.5deg
Diffuse angle: @ (25%): 44.0deg @ (50%): 34.5deg @ (75%): 24.6deg @ (50%): 34.5deg
Imax=925.0cd (C=0.0deg,G=-1.0deg)

CO-180Plane Imax= 925.0cd (G=-1.0deg)

CO-180Plane IO= 924.9cd

Intensity data: (deg , cd) C0-180

A	I	A	I	A	I	A	I	A	I	A	I
-90.0	0.2825	-58.5	2.662	-27.0	200.5	4.5	465.4	36.0	39.25	67.5	0.3425
-88.5	0.2488	-57.0	3.684	-25.5	233.6	6.0	461.6	37.5	29.11	69.0	0.2961
-87.0	0.2164	-55.5	5.060	-24.0	267.6	7.5	457.0	39.0	23.22	70.5	0.3254
-85.5	0.2293	-54.0	6.727	-22.5	299.9	9.0	451.2	40.5	20.04	72.0	0.3446
-84.0	0.2629	-52.5	8.712	-21.0	328.7	10.5	444.8	42.0	18.40	73.5	0.3525
-82.5	0.3168	-51.0	10.64	-19.5	354.2	12.0	438.6	43.5	17.50	75.0	0.3740
-81.0	0.3472	-49.5	12.28	-18.0	376.2	13.5	430.4	45.0	16.58	76.5	0.3522
-79.5	0.3663	-48.0	13.77	-16.5	395.0	15.0	420.4	46.5	15.40	78.0	0.3199
-78.0	0.3640	-46.5	15.02	-15.0	409.9	16.5	407.4	48.0	13.90	79.5	0.3176
-76.5	0.3118	-45.0	16.14	-13.5	422.4	18.0	389.9	49.5	12.27	81.0	0.2453
-75.0	0.3034	-43.5	16.86	-12.0	432.1	19.5	368.4	51.0	10.40	82.5	0.2413
-73.5	0.2579	-42.0	18.04	-10.5	440.9	21.0	342.3	52.5	8.517	84.0	0.2445
-72.0	0.2844	-40.5	20.06	-9.0	447.9	22.5	309.6	54.0	6.565	85.5	0.2684
-70.5	0.3285	-39.0	23.87	-7.5	454.2	24.0	277.8	55.5	4.965	87.0	0.3049
-69.0	0.3812	-37.5	29.92	-6.0	460.2	25.5	242.1	57.0	3.628	88.5	0.3384
-67.5	0.4394	-36.0	40.66	-4.5	464.0	27.0	205.3	58.5	2.782	90.0	0.3097
-66.0	0.5270	-34.5	57.81	-3.0	467.0	28.5	169.8	60.0	1.830		
-64.5	0.6351	-33.0	80.00	-1.5	469.3	30.0	135.1	61.5	1.309		7
-63.0	0.8422	-31.5	105.4	0.0	470.1	31.5	104.0	63.0	0.8244		
-61.5	1.331	-30.0	134.8	1.5	469.8	33.0	77.72	64.5	0.5653		
-60.0	1.909	-28.5	167.3	3.0	468.5	34.5	55.82	66.0	0.4147		

Electricity Parameter:

Current I: 0.1000A Power: 3.259W Voltage V: 32.59V PF: 1.000

Optical Parameter (Distance=2.410m):

Equivalent Luminous flux: Φ eff= 325.4lm Efficiency: Eff=99.86lm/W

Diffuse angle: @(25%): 61.6deg @(50%): 51.1deg @(75%): 39.9deg @(50%): 51.1deg
Diffuse angle: @(25%): 61.6deg @(50%): 51.1deg @(75%): 40.0deg @(50%): 51.1deg
Imax=470.3cd (C=0.0deg,G=-0.5deg)

CO-180Plane Imax= 470.3cd (G=-0.5deg)

20 10073 - 20 170 1 1

C0-180Plane I0= 470.1cd

			Standard size	Upper Size limit	Lower size limit	Test result1	Test result2	Test result3	Test result4	Jud gme nt	Remarks	
	highl	y	31. 8			32. 12	32. 09	32. 06	32. 17			
1.Size	The diam of	neter	68			67. 9	67.82	67.88	67.86		Test environment: In 20 °C -25 °C environment to	
	The thick of the		2. 5			2. 65	2. 69	2. 68	2. 72		achieve thermal equilibrium after the test.	
				Gate shear can not affect the appearance of the lamp								
		See attachment "Appearance Inspection Standards"										
2.Appea	rance	atta	See chment earance	E	١	No burr	No burr	No burr	No bu	rr	OK	
Quality		Ins	pection ndards"		N	o stains	No stains	No stains	No stains			
3.Materia	al		PC	half alumin	um plating		Color	Tra	nsparent		ОК	
	Testing	· · · · · · · · · · · · · · · · · · ·										
	to the s	ource (nmended size and power rating of the LED light source recommended for this lens should be comparable urce of the test, if it is required to be out of range. According to the heat dissipation capability of the lamp ctual conditions of the use environment, the lens should be fully tested and tested to prevent the lens life.									
4.Optica	FWHI	М		See light distribution curv								
I index	angle	Э				13.6°	13.1°	13. 2°	13.0°			
	K-val	ue				9.8	10. 3	10. 12	10.39			
	Efficie					74. 70%	74. 86%	73.85%	72. 17%			
	Facula	See th	ne signatu	re sample								
	ehensive ment						Qu	alified				
, ,					PC n	roduct	size cha	nges wit	th temr	era	ture table	
Caliper 2 Height G Microsco Thick Ga Gauge E 2、 Amb the size 6	Number: \ D-Quadra auge M-To pe P-Nee auge R-Ra	tic H- ool dle T- dius erature luct ref	on	Lengt chang (mn	th 0.9 - (ses 0.8 - (ses 0.8 - (ses 0.8 - (ses 0.7 - (ses 0.7 - (ses 0.4 - (ses 0.2 - (s		10	20	30	40	Size:	
					0 10 20 30 40 (°C)							

- Please wear clean gloves during the lens assembly process to prevent the lens surface from being contaminated.
 Try to avoid touching the total reflection surface when taking the lens.
- 3. The lens surface is contaminated. Only use a soft cotton cloth dipped in analytically pure neutral solvent to wipe gently. Do not wipe with industrial solvents (alcohol, isopropanol, acetone, ether, toluene, xylene, carbon tetrachloride, MMA Body, etc.).
- 4. The working temperature of the lens should be within the temperature resistance limit of the lens material. Exceeding the temperature resistance limit will cause the lens to crack or melt and affect the service life of the lens. It is recommended that the upper surface temperature of the LED colloid should be less than 120 degrees.

			Standard size	Upper Size limit	Lower size limit	Test result1	Test result2	Test result3	Test result4	Jud gme nt	Remarks
	highly	/	31.8			31. 92	31. 93	31. 96	31. 93		
1.Size	The diam of	eter	68			67.83	67.85	67.84	67.83		Test environment: In 20 °C -25 °C environment to
	The thick		2. 5			2.6	2. 68	2. 52	2. 58		achieve thermal equilibrium after the test.
			<u>.</u>	Gate	shear can	not affect th	e appearar	nce of the la	amp		
			ı	See	attachment	t "Appearan	ce Inspecti	on Standar	ds"		
2.Appear	rance	atta	See achment bearance	E	1	No burr	No burr	No burr	No bu	rr	ok
Quality		Ins	pection ndards"	1	N	o stains	No stains	No stains	lo stains No stains		
3.Materia	al		PC	half alumin	um plating	Color	Tra	Transparent OK			
4.Optica	Testing LED D12(Use D9 15 °) The recommended size and power rating of the LED light source recommended for this lens should be comp to the source of the test, if it is required to be out of range. According to the heat dissipation capability of the and the actual conditions of the use environment, the lens should be fully tested and tested to prevent the lens. FWHM See light distribution curve								ability of the lamp		
I index	angle	9				22.0°	21.9°	22.0°	21.7°		
	K-val	ue				5. 08	5. 05	5	5. 16		
	Efficie	ncy				73.87%	74.00%	74. 04%	74.07%		
	Facula	See th	he signatu	re sample		`					
	ehensive ment						Qu	ıalified			
, ,					PC proc	duct size c	hanges wi	th temper	ature ta	ble	
100mm 150mm 200mm 250mm 300mm	Number: V D-Quadra auge M-To pe P-Need uge R-Rad	tic H- pol dle T- dius erature uct ref	e on	Lengti change (mm	0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2					Size: Size: Size: Size:	: 50mm : 100mm : 150mm : 200mm : 250mm : 300mm
					0	10	20	30	(°C)		

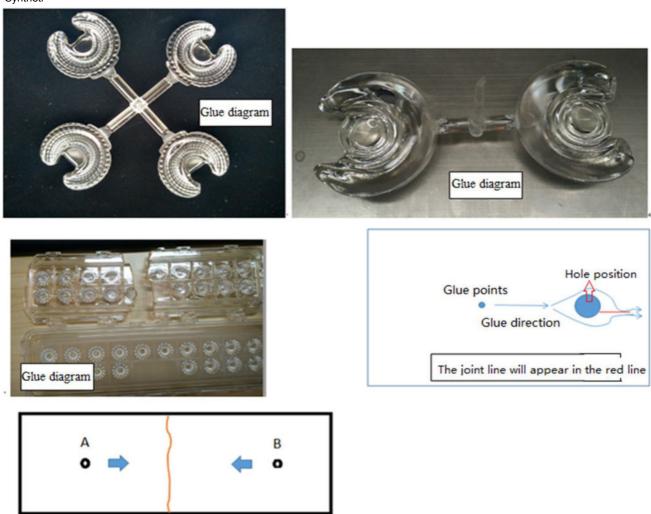
- Please wear clean gloves during the lens assembly process to prevent the lens surface from being contaminated.
 Try to avoid touching the total reflection surface when taking the lens.
- 3. The lens surface is contaminated. Only use a soft cotton cloth dipped in analytically pure neutral solvent to wipe gently. Do not wipe with industrial solvents (alcohol, isopropanol, acetone, ether, toluene, xylene, carbon tetrachloride, MMA Body, etc.).
- 4. The working temperature of the lens should be within the temperature resistance limit of the lens material. Exceeding the temperature resistance limit will cause the lens to crack or melt and affect the service life of the lens. It is recommended that the upper surface temperature of the LED colloid should be less than 120 degrees.

		Ş	Standard size	Upper Size limit	Lower size limit	Test result1	Test result2	Test result3	Test result4	Jud gme nt	Remarks
	highly	/	31. 8			31. 96	31. 96	32. 01	32. 05		
1.Size	The diam of	eter	68			67.87	67.85	67.82	67. 82	\setminus	Test environment: In 20 °C -25 °C environment to
	The thick of the		2. 5			2. 58	2.6	2. 68	2. 6		achieve thermal equilibrium after the test.
			1	Gate	shear can	not affect th	e appearar	nce of the la	ımp		
				See	attachment	t "Appearan	ce Inspecti	on Standar	ds"		
2.Appear	rance	atta	See chment earance	E	1	No burr	No burr	No burr	No bu	rr	OK
Quality		Insp	pection ndards"		N	o stains	No stains	No stains	No stai	ns	-
3.Materia	al		PC I	half alumin	um plating	Color	Tra	Transparent OK			
	Testing I	_ED				D.	12(Use D9	15 °)			
	to the so	The recommended size and power rating of the LED light source recommended for this lens should be comparable to the source of the test, if it is required to be out of range. According to the heat dissipation capability of the lamp and the actual conditions of the use environment, the lens should be fully tested and tested to prevent the lens life.									
4.Optica I index		_					ht distribut				
Tilldex	angle	_			_	34. 5°	35°	35. 5°	35. 8		
	K-val	-			_	2.84	2.8	2. 73	2. 69		
	Efficie					73. 03%	73. 45%	73. 09%	73. 14%		
0	Facula	See th	e signatui	re sample							
	ehensive ment						Qι	ıalified			
					PC pro	duct size c	hanges wi	th temper	ature ta	ble	
Caliper 2 Height G Microsco Thick Ga Gauge E 2、Amb the size o	Number: V D-Quadra auge M-To ope P-Need auge R-Ra	tic H- col dle T- dius erature uct refe	on	Lengtl change (mm	0.9	10	20	30		Size Size Size Size	: 50mm : 100mm : 150mm : 200mm : 250mm : 300mm

- Please wear clean gloves during the lens assembly process to prevent the lens surface from being contaminated.
 Try to avoid touching the total reflection surface when taking the lens.
- 3. The lens surface is contaminated. Only use a soft cotton cloth dipped in analytically pure neutral solvent to wipe gently. Do not wipe with industrial solvents (alcohol, isopropanol, acetone, ether, toluene, xylene, carbon tetrachloride, MMA Body, etc.).
- 4. The working temperature of the lens should be within the temperature resistance limit of the lens material. Exceeding the temperature resistance limit will cause the lens to crack or melt and affect the service life of the lens. It is recommended that the upper surface temperature of the LED colloid should be less than 120 degrees.

						1	1				1
			Standard size	Upper Size limit	Lower size limit	Test result1	Test result2	Test result3	Test result4	Jud gme nt	Remarks
	highly	/	31.8			31.91	31. 86	31. 96	31. 92		
1.Size	The diam of	eter	68			67.84	67.87	67. 83	67.87		Test environment: In 20 °C -25 °C environment to
	The thick of the		2. 5			2. 6	2. 53	2. 5	2. 52		achieve thermal equilibrium after the test.
				Gate	shear can	not affect th	e appearar	nce of the la	amp		
				See	attachmen	t "Appearan	ce Inspecti	on Standar	ds"		
2.Appear	ance	atta	See achment bearance	E		No burr	No burr	No burr	No bu	rr	OK
Quality			spection indards"		N	lo stains	No stains	No stains	No stai	ns	
3.Materia	ıl		PC	half alumin	um plating		Color	Tra	nsparent		OK
4.Optica	to the so	ecommended size and power rating of the LED light source recommended for this less source of the test, if it is required to be out of range. According to the heat dissipation actual conditions of the use environment, the lens should be fully tested and test WHM See light distribution curve							t dissipatio	n capa	ability of the lamp
I index	angle	9				51. 1°	51. 3°	51.0°	51. 2°		
	K-val										
	Efficie					72. 86%	73. 10%	73. 35%	73. 05%		
0.000	Facula	See t	he signatu	re sample		<u> </u>					
	hensive ment						Qι	ıalified			
					PC pro	duct size o	hanges wi	ith tempe	rature ta	ble	
Remarks: 1. Tool Number: V-Vernier Caliper 2D-Quadratic H- Height Gauge M-Tool Microscope P-Needle T- Thick Gauge R-Radius Gauge E-Visual. 2. Ambient temperature on the size of the product refer to the table on the right Length changes (mm) 0. 9 0. 8 0. 7 0. 6 0. 6 0. 6 0. 7 0. 6 0. 7 0. 7 0. 1 0. 1 0. 1 0. 1										-Size -Size -Size -Size	: 50mm : 100mm : 150mm : 200mm : 250mm : 300mm
					0	10	20	30	40 (℃)		

- Please wear clean gloves during the lens assembly process to prevent the lens surface from being contaminated.
 Try to avoid touching the total reflection surface when taking the lens.
- 3. The lens surface is contaminated. Only use a soft cotton cloth dipped in analytically pure neutral solvent to wipe gently. Do not wipe with industrial solvents (alcohol, isopropanol, acetone, ether, toluene, xylene, carbon tetrachloride, MMA Body, etc.).
- 4. The working temperature of the lens should be within the temperature resistance limit of the lens material. Exceeding the temperature resistance limit will cause the lens to crack or melt and affect the service life of the lens. It is recommended that the upper surface temperature of the LED colloid should be less than 120 degrees.


Р	N	HK-HG-68@32-15-D9	-21-1g-1	Product Name	HK Gemini 68-32 -15 degree	reflectiv	e cup
Product	material	PC half aluminum p	lating	Customer			
Package	diagram	© □	Vacuum pa	ckage	Box package	>	>
Product	packing	8	A/ Box	4	pcs/Layer		
		4	Layer/Box	128	A/ Carton		
	NO.	Part No	Part name	Size	Dosage	Unit	Remarks
	1	2. 07. 0080	Blister box	23cm*21cm	16	BAG	
Packagin	2	2. 08. 0001	PE film	25cm*27cm	16	PCS	
g Materials	3	2. 06. 0005	Reel label paper	62mm*42mm	16	PCS	
ivialeriais	4	2. 06. 0005	Box label paper	62mm*70mm	1	PCS	
	5	2. 06. 0003	big plate	46cm*42cm	5	PCS	
	6	2. 06. 0018	big flat carton	48cm*44cm*19cm	1	PCS	
Remarks	Scattered	packaging is not restricted b	y this specificati	on, the customer has	the requirements of the custor	ner shal	l prevail

Special notice

When gule pass through holes, columns and other structures, or part of the thin structure, will form a weld line. The product which uses multi-point injection welding line will appear because of the combination of sol, as shown below:

Syntneti

Please note:

The appearance of lines in the structure of the product as well as at the screw hole is a normal phenomenon, will not affect the actual use of the product, and can not be avoided at this stage.

The joint line will appear in the red line

Appearance inspection standards

1 Operating procedures

1.1.1Sampling standards, sampling plan and AQL

Test level : GB/T2828.1-2012The first part is according to the acceptance quality limit (AQL) retrieval batch inspection sampling plan, general inspection level Π level, CR class defect coefficient 0, MA defect rejection level AQL = 0.65, MI class defect rejection level AQL = 1.0; defect level please see 5.4.

2 Code table

Code	Code	Unit	Code	Code	Unit
	description			description	
N	Amount/pcs	pcs	D	Diameter	mm
L	Length	mm	Н	Depth	mm
W	Width	mm	DS	Distance	mm
S	Proportion	mm²	SS	Offset	mm

3 Test conditions

- 3.1 Sight distance and working hours: Sight distance should be 30-35cm, each side of the inspection time does not exceed 12s, the visual angle of 45-135 degrees;
- 3.2 Light: 2x40w cool white fluorescent lamp, the light source is 500-550mm away from the lens surface; in order to make the appearance defect can be correctly recognized, the illumination should be 500-1000Lux, and the observation time is 10 seconds.
- 3.3 Visual inspection staff should be 1.0 (including corrected visual acuity) above, no color blindness, color weakness.

4 Appearance inspection standards

Test items	ludeire etendere	Inspection equipment		Defect level	
restitems	Judging standard	Testing method	MI	MA	CR
	When start the machine and process, all products have to check the appearance of the sample, the appearance of the sample is divided into qualified samples and limited samples.				
Check the sample	Qualified sample refers to the appearance and structure standard of the product which recognized by the client, the sample size should be confirmed before mass production;	Sample comparison , visual			√
	2: The limited sample refers to the limit of a particular exceptionally developed sample. Limit the sample only for its specific point of exception to confirm; The priority is higher than the other criteria in this table. When there is a limited sample, the limit sample shall prevail.				
Raw edge	Not allowed to affect the size and assembly	Visual, point card		√	

1					
Scratch	Non-optical surface and non-exposed surface scratches should be visually insignificant and the length is less than 1/10 of the maximum surface size.	Visual, point card, calipers		√	
Fingerprint	Fingerprints are not allowed on all products	Visual		√	
Foreign objects, black spots, white spots	The product may not be attached to foreign objects, including oil, fiber, dregs of water gap and so on				√
Deformation	Insufficient filling shall not affect the appearance of the assembly and the exposed surfaces.	Visual, feeler			√
Poor ejection	Products may not appear bad ejection, including no convex top, thimble printed on the assembly surface shall not be higher than the product surface, non-assembled surface thimble height should not exceed the product size tolerances; thimble printing should be less than the product surface and no more than 0.3; thimble surface treatment should be consistent with the product side. Ejection strain: the optical surface and the appearance of the exposed surface after assembly are not allowed to have a strain, and the structural surface does not allow visual obvious strain.	Visual, point card		√	
Insufficient filling	Insufficient filling shall not affect the appearance of the assembly and the exposed surfaces , The signature sample shall prevail.	Visual, point card		√	
Shrink	When the entire surface of the product shrinks, the optical properties and dimensions must meet the requirements, and the visual will not significantly affect the appearance.Part shrink reference point defects	Visual, point card		√	
Flow marks、Welding line	1 : Product does not allow the presence of flow marks and welding lines unless the structure can not be avoided; 2: The remaining flow marks shall not appear in the optical surface, a single L ≤ 10mm, no more than two	. Visual		√	
Bubble	No bubbles are allowed	Visual		√	
Foreign objects, black spots, white spots	Not obvious or D ≤ 0.3mm black spots and foreign bodies in the area of 100x100mm not more than 1; Exceeded foreign matter black spots is judged bad.	Visual, point card	V		
Damaged	No damage is allowed	Visual			√
Cold glue	Optical surface may not have cold glue, non- optical surface cold glue should meet the visual is not obvious.	Visual	√		
Bad incision	1: Do not affect the product size, shall not penetrate the optical surface, the cut should be smooth; 2: Laser cutting products, the optical surface burns shall not occur after the processing is completed. Beading must not affect product installation 3: Three molds and hot runner gate shall not appear residue.	Visual			√
Scrub	Scrub surface should be uniform, off the scrub phenomenon should not be obvious , A single off scrub imprint requires D \leq 1 mm and no more than 1 area within a 50x50 mm area	Visual		√	